Skip to main content

Section 5.3 Matrices and Linear Transformations

Recall that every matrix transformation \(\vec{x} \mapsto A\vec{x}\) is a linear transformation. It turns out that also, every linear transformation \(T\) from \(\mathbb{R}^n\) to \(\mathbb{R}^m\) can be written as a matrix transformation. In other words, every linear transformation \(T: \mathbb{R}^n \rightarrow \mathbb{R}^m\) can be written in the form \(T(\vec{x}) = A\vec{x}\) for some \(m \times n\) matrix \(A\text{.}\) Intuitively, the matrix \(A\) is the numerical “formula” which allows for concrete computation of the images \(T(\vec{x})\text{.}\)

Subsection 5.3.1 Linear Transformations and Matrices

Consider a linear transformation in the plane, \(T: \mathbb{R}^2 \rightarrow \mathbb{R}^2\text{.}\) Recall that any vector \(\vec{x} = (x_1, x_2) \in \mathbb{R}^2\) can be written in terms of the standard basis vectors \(\ihat = (1,0), \jhat = (0,1)\text{,}\) as,
\begin{equation*} \vec{x} = x_1 \ihat + x_2 \jhat \end{equation*}
Then, consider the image of \(\vec{x}\) under \(T\text{,}\)
\begin{equation*} T(\vec{x}) = T(x_1 \ihat + x_2 \jhat) \end{equation*}
By linearity, this is equivalent to,
\begin{align*} T(\vec{x}) \amp = T(x_1 \ihat + x_2 \jhat)\\ \amp = x_1 T(\ihat) + x_2 T(\jhat) \end{align*}
Thus, if we know the images of the standard basis vectors \(T(\ihat)\) and \(T(\jhat)\text{,}\) we can determine the image of any arbitrary vector \(T(\vec{x})\text{.}\) In this way, the transformation \(T\) is “completely determined” by the two images \(T(\ihat)\) and \(T(\jhat)\text{.}\) Intuitively, if you know \(T(\ihat)\) and \(T(\jhat)\text{,}\) then you know \(T\text{.}\)
Further, the transformation \(T\) can also be written as a matrix-vector product,
\begin{align*} T(\vec{x}) \amp = x_1 T(\ihat) + x_2 T(\jhat)\\ T(\vec{x}) \amp = \begin{bmatrix} T(\ihat) \amp T(\jhat) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{align*}
Here, the matrix \(\begin{bmatrix} T(\ihat) \amp T(\jhat) \end{bmatrix}\) has two columns, given by the images of the vectors \(\ihat\) and \(\jhat\text{.}\) If we denote this matrix by \(A\text{,}\) then the equation becomes,
\begin{equation*} T(\vec{x}) = A\vec{x} \end{equation*}
That is, we have written \(T(\vec{x})\) as a matrix transformation. Notice that the matrix \(A\) only depends on the transformation \(T\text{,}\) and not on the input vector \(\vec{x}\text{.}\)
This can be generalized to a linear transformation \(T: \mathbb{R}^n \rightarrow \mathbb{R}^m\text{.}\)
In this way, matrices provide a numerical language for understanding linear transformations. Intuitively, the term linear transformation focusses on the properties of the mapping, whereas matrix transformation describes how the mapping is implemented.
For \(\vec{x} \in \mathbb{R}^n\text{,}\)
\begin{equation*} \vec{x} = x_1 \ihat + \dots + x_n \vec{e}_n \end{equation*}
Then,
\begin{align*} T(\vec{x}) = T(x_1 \ihat + \dots + x_n \vec{e}_n) \amp = x_1 T(\ihat) + \dots + x_n T(\vec{e}_n)\\ \amp = \begin{bmatrix} T(\ihat) \amp \cdots \amp T(\vec{e}_n) \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \\ \amp = A\vec{x} \end{align*}

Subsection 5.3.2 Linear Transformations and Linear Systems

The framework of linear transformation provides yet another perspective on linear systems.
Consider the linear system,
\begin{equation*} \begin{array}{rrrr} x \amp + 5y \amp = \amp 7 \\ -2x \amp -7y \amp = \amp -5 \end{array} \end{equation*}
In matrix form, this is,
\begin{equation*} \underbrace{\begin{bmatrix} 1 \amp 5 \\ -2 \amp -7 \end{bmatrix}}_{A} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 7 \\ -5 \end{bmatrix} \end{equation*}
Then, viewing \(A\) as a linear transformation (from \(\mathbb{R}^2\) to \(\mathbb{R}^2\)), the problem of solving this linear system is equivalent to asking which vector \((x,y)\) does the transformation \(A\) map to the vector \((7,-5)\text{.}\) In this case, solving the system gives the unique solution of \((-8,3)\text{,}\) which means that the single vector \((-8,3)\) is mapped to \((7,-5)\text{.}\)
Consider the system,
\begin{equation*} \begin{array}{rrrrr} x \amp + 3y \amp + 4z \amp = \amp 7 \\ 3x \amp + 9y \amp + 7z \amp = \amp 6 \end{array} \end{equation*}
In matrix form,
\begin{equation*} \begin{bmatrix} 1 \amp 3 \amp 4 \\ 3 \amp 9 \amp 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7 \\ 6 \end{bmatrix} \end{equation*}
Then, the coefficient matrix is a linear transformation from \(\mathbb{R}^3\) to \(\mathbb{R}^2\text{,}\) and solving the system amounts to finding all vectors in \(\mathbb{R}^3\) which are mapped to \((7,6)\text{.}\) The augmented matrix is,
\begin{equation*} \left[\begin{array}{cccc} 1 \amp 3 \amp 4 \amp 7 \\ 3 \amp 9 \amp 7 \amp 6 \end{array}\right] \end{equation*}
which has RREF,
\begin{equation*} \left[\begin{array}{cccc} 1 \amp 3 \amp 0 \amp -5 \\ 0 \amp 0 \amp 1 \amp 3 \end{array}\right] \end{equation*}
Thus, \(z = 3\text{,}\) \(y = t\) can be treated as a free variable, and then \(x = -5 - 3t\text{.}\) Thus, the solution in parametric form is,
\begin{equation*} \begin{cases} x = -5 -3t \\ y = t \\ z = 3 \end{cases} \qquad t \in \mathbb{R} \end{equation*}
In vector form, this means that any vector of the form,
\begin{equation*} \begin{bmatrix} -5 -3t \\ t \\ 3 \end{bmatrix} \end{equation*}
where \(t \in \mathbb{R}\text{,}\) is a solution of the system. A useful interpretation is to split this vector up into the parts which vary (depending on \(t\)) and that which is constant,
\begin{equation*} \begin{bmatrix} -5 -3t \\ t \\ 3 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \\ 3 \end{bmatrix} + t \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix} \end{equation*}