Skip to main content ☰ Contents You! < Prev ^ Up Next > \(\newcommand{\abs}[1]{\left\lvert #1 \right\rvert}
\newcommand{\set}[1]{\left\{ #1 \right\}}
\renewcommand{\neg}{\sim}
\newcommand{\brac}[1]{\left( #1 \right)}
\newcommand{\eval}[1]{\left. #1 \right|}
\renewcommand{\vec}[1]{\mathbf{#1}}
\newcommand{\ihat}{\mathbf{\hat{\imath}}}
\newcommand{\jhat}{\mathbf{\hat{\jmath}}}
\newcommand{\khat}{\mathbf{\hat{k}}}
\newcommand{\vecii}[2]{\left\lt #1, #2 \right\gt}
\newcommand{\veciii}[3]{\left\lt #1, #2, #3 \right\gt}
\newenvironment{amatrix}[1]{\left[\begin{array}{@{}*{#1}{c}|c@{}}}{\end{array}\right]}
\DeclareMathOperator{\Ker}{Ker}
\DeclareMathOperator{\nullity}{nullity}
\DeclareMathOperator{\Row}{Row}
\DeclareMathOperator{\Col}{Col}
\DeclareMathOperator{\Null}{N}
\DeclareMathOperator{\Image}{Im}
\newcommand{\Span}[1]{\text{Span}\left(#1 \right)}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\colrk}{colrk}
\DeclareMathOperator{\rowrk}{rowrk}
\newcommand{\tr}[1]{tr\left( #1 \right)}
\DeclareMathOperator{\matref}{ref}
\DeclareMathOperator{\matrref}{rref}
\DeclareMathOperator{\sol}{Sol}
\newcommand{\inp}[2]{\left\lt #1, #2 \right\gt}
\newcommand{\norm}[1]{\left\lVert #1 \right\rVert}
\newcommand{\prob}[1]{P\left( #1 \right)}
\newcommand{\overbar}[1]{\mkern 1.5mu \overline {\mkern-1.5mu#1 \mkern-1.5mu} \mkern 1.5mu}
\renewcommand{\frame}[1]{\tilde{\underline{\vec{#1}}}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 4.2 Matrix Equations, Matrix-Vector Product
Next, we will combine matrices and vectors, in order to write a system of linear equations as an equation relating matrices and vectors.
Subsection 4.2.1 Product of a Matrix with a Vector
Definition 4.2.1 .
Let \(A = \begin{bmatrix} a_{ij} \end{bmatrix}\) be an \(m \times n\) matrix, \(\vec{x} \in \mathbb{R}^n\) be a vector, \(\vec{x} = (x_1, \dots, x_n)\text{.}\) Then, the product of \(A\) and \(\vec{x}\text{,}\) is the vector defined by,
\begin{equation*}
\boxed{A\vec{x} = \begin{bmatrix} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \\ \vdots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^n a_{1k} x_k \\ \sum_{k=1}^n a_{2k} x_k \\ \vdots \\ \sum_{k=1}^n a_{mk} x_k \end{bmatrix}}
\end{equation*}
In general, to detemrine the \(i\) th entry of the vector \(A\vec{x}\text{,}\) compute the “product” of the \(i\) th row of \(A\text{,}\) and \(\vec{x}\text{,}\) as,
\begin{equation*}
\begin{bmatrix} a_{i1} \amp a_{i2} \amp \dots \amp a_{in} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{i1} x_1 + a_{i2} x_2 + \dots + a_{in} x_n \end{bmatrix}
\end{equation*}
This operation, of multiplying two vectors of matching lengths to produce a single number (in particular a row vector and a column vector), is called a dot product , of the two vectors. More generally, for vectors \(\vec{a} = (a_1, \dots, a_n), \vec{b} = (b_1, \dots, b_n)\text{,}\)
\begin{equation*}
\boxed{\begin{bmatrix} a_1 \amp a_2 \amp \dots \amp a_n \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n}
\end{equation*}
Subsection 4.2.2 Matrix Form of a Linear System
Multiplication of a matrix and a vector is precisely defined as to align with systems of equations. In particular, for the system of equations,
\begin{alignat*}{3}
a_{11}x_1 \amp + a_{12}x_2 \amp + \dots \amp + a_{1n}x_n \amp = b_1\\
a_{21}x_1 \amp + a_{22}x_2 \amp + \dots \amp + a_{2n}x_n \amp = b_2\\
\vdots \quad \amp \qquad \vdots \amp \amp \qquad \vdots \amp \vdots\\
a_{m1}x_1 \amp + a_{m2}x_2 \amp + \dots \amp + a_{mn}x_n \amp = b_n
\end{alignat*}
\begin{equation*}
\underbrace{A = \begin{bmatrix}
a_{11} \amp a_{12} \amp \dots \amp a_{1n} \\
a_{21} \amp a_{22} \amp \dots \amp a_{2n} \\
\vdots \amp \vdots \amp \ddots \amp \vdots \\
a_{m1} \amp a_{n2} \amp \dots \amp a_{mn}
\end{bmatrix}}_{\text{matrix of coefficients}}
\qquad
\underbrace{\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}}_{\text{vector of unknowns}} \qquad \underbrace{\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}}_{\text{constant vector}}
\end{equation*}
\(A\vec{x} = \vec{b}\text{.}\)
Subsection 4.2.3 Linear Combination Interpretation
From the previous definition of a matrix-vector product, we can expand out the product as,
\begin{align*}
A\vec{x} = \begin{bmatrix} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \\ a_{21} x_1 + a_{22} x_2 + \dots + x_{2n} x_n \\ \vdots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \end{bmatrix} \amp = \begin{bmatrix} a_{11} x_1 \\ a_{21} x_1 \\ \vdots \\ a_{m1} x_1 \end{bmatrix} + \begin{bmatrix} a_{12} x_2 \\ a_{22} x_2 \\ \vdots \\ a_{m2} x_2 \end{bmatrix} + \dots + \begin{bmatrix} a_{1n} x_n \\ a_{2n} x_n \\ \vdots \\ a_{mn} x_n \end{bmatrix}\\
\amp = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} x_n \end{bmatrix}
\end{align*}
\(A\vec{x}\) \(A\text{,}\) \(\vec{x}\text{.}\)
Theorem 4.2.2 .
The product \(A\vec{x}\) is the linear combination of the columns of \(A\) with the corresponding entries of \(\vec{x}\) as weights. More precisely, if \(A = \begin{bmatrix} \vec{a}_1 \amp \vec{a}_2 \amp \cdots \amp \vec{a}_n \end{bmatrix}\text{,}\) and \(\vec{x} = (x_1, \dots, x_n)\text{,}\) then,
\begin{equation*}
\boxed{A \vec{x} = \begin{bmatrix} \vec{a}_1 \amp \vec{a}_2 \amp \cdots \amp \vec{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \vec{a}_1 + \dots + x_n \vec{a}_n}
\end{equation*}
Subsection 4.2.4 Matrix Equations as Linear Systems
This provides yet another interpretation of linear systems.
Theorem 4.2.3 .
Let \(A\) be an \(m \times n\) matrix with columns \(\vec{a}_1, \dots, \vec{a}_n\text{,}\) and let \(\vec{b} \in \mathbb{R}^m\text{.}\) Then, the matrix equation \(A\vec{x} = \vec{b}\) has precisely the same solution set as the system of linear equations whose augmented matrix is,
\begin{equation*}
\begin{bmatrix} \vec{a}_1 \amp \vec{a}_2 \amp \dots \amp \vec{a}_n \amp \vec{b} \end{bmatrix}
\end{equation*}
Corollary 4.2.4 .
The equation \(A\vec{x} = \vec{b}\) has a solution if and only if \(\vec{b}\) is a linear combination of the columns of \(A\text{.}\)
Subsection 4.2.5 The Identity Matrix
Recall that for real numbers, multiplying a number by 1 results in the number being unchanged. We say that 1 is the multiplicative identity for real numbers, and that \(a \cdot 1 = a\) for all \(a \in \mathbb{R}\text{.}\) Similarly, we can define a matrix which, when multiplied by any vector, leaves it unchanged. This matrix is called an identity matrix .
Definition 4.2.5 .
An identity matrix is a square matrix with 1's along the main diagonal (from top left to bottom right) and 0's everywhere else. In particular, the \(n \times n\) identity matrix is denoted by \(I_n\text{,}\) and is given by,
\begin{equation*}
I_n = \begin{bmatrix} 1 \amp 0 \amp \dots \amp 0 \\ 0 \amp 1 \amp \dots \amp 0 \\ \vdots \amp \vdots \amp \ddots \amp \vdots \\ 0 \amp 0 \amp \dots \amp 1 \end{bmatrix}
\end{equation*}
For example, the \(2 \times 2\) identity matrix \(I_2\) and the \(3 \times 3\) identity matrix \(I_3\) are given by,
\begin{equation*}
I_2 = \begin{bmatrix} 1 \amp 0 \\ 0 \amp 1 \end{bmatrix} \qquad I_3 = \begin{bmatrix} 1 \amp 0 \amp 0 \\ 0 \amp 1 \amp 0 \\ 0 \amp 0 \amp 1 \end{bmatrix}
\end{equation*}
The identity matrix acts as a multiplicative identity , in that it has the property that \(I_n \vec{x} = \vec{x}\) for all \(\vec{x} \in \mathbb{R}^n\text{.}\) Indeed, for example,
\begin{equation*}
I_2 \vec{x} = \begin{bmatrix} 1 \amp 0 \\ 0 \amp 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \vec{x}
\end{equation*}
Subsection 4.2.6 Properties of the Matrix-Vector Product
Theorem 4.2.6 .
Let \(A\) be an \(m \times n\) matrix, \(\vec{u}, \vec{v} \in \mathbb{R}^n\) be vectors, \(c \in \mathbb{R}\) be a scalar. Then,
\(\displaystyle A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v}\)
\(\displaystyle A(c\vec{u}) = c(A\vec{u})\)
Proof of \(2 \times 2\) case. Let \(A = \begin{bmatrix} \vec{a}_1 \amp \vec{a}_2 \end{bmatrix}, \vec{u} = (u_1, u_2), \vec{v} = (v_1, v_2)\text{.}\) Then,
\begin{align*}
A(\vec{u} + \vec{v}) \amp = \begin{bmatrix} \vec{a}_1 \amp \vec{a}_2 \end{bmatrix} \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}\\
\amp = (u_1 + v_1) \vec{a}_1 + (u_2 + v_2) \vec{a}_2\\
\amp = u_1 \vec{a}_1 + v_1 \vec{a}_1 + u_2 \vec{a}_2 + v_2 \vec{a}_2\\
\amp = \brac{u_1 \vec{a}_1 + u_2 \vec{a}_2} + \brac{v_1 \vec{a}_1 + v_2 \vec{a}_2}\\
\amp = A\vec{u} + A\vec{v}
\end{align*}
Also,
\begin{align*}
A(c\vec{u}) \amp = \begin{bmatrix} \vec{a}_1 \amp \vec{a}_2 \end{bmatrix} \begin{bmatrix} cu_1 \\ cu_2 \end{bmatrix}\\
\amp = cu_1 \vec{a}_1 + cu_2 \vec{a}_2\\
\amp = c\brac{u_1 \vec{a}_1 + u_2 \vec{a}_2}\\
\amp = c (A\vec{u})
\end{align*}
Proof of general case. Let \(A = \begin{bmatrix} \vec{a}_1 \amp \dots \amp \vec{a}_n \end{bmatrix}, \vec{u} = (u_1, \dots, u_n), \vec{v} = (v_1, \dots, v_n)\text{.}\) Then,
\begin{align*}
A(\vec{u} + \vec{v}) \amp = \begin{bmatrix} \vec{a}_1 \amp \dots \amp \vec{a}_n \end{bmatrix} \begin{bmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{bmatrix}\\
\amp = (u_1 + v_1) \vec{a}_1 + \dots + (u_n + v_n) \vec{a}_n\\
\amp = u_1 \vec{a}_1 + \dots + u_n \vec{a}_n + v_1 \vec{a}_1 + \dots + v_n \vec{a}_n\\
\amp = A\vec{u} + A\vec{v}
\end{align*}
Also,
\begin{align*}
A(c\vec{u}) \amp = \begin{bmatrix} \vec{a}_1 \amp \dots \amp \vec{a}_n \end{bmatrix} \begin{bmatrix} cu_1 \\ \vdots \\ cu_n \end{bmatrix}\\
\amp = cu_1 \vec{a}_1 + \dots + cu_n \vec{a}_n\\
\amp = c\brac{u_1 \vec{a}_1 + \dots + u_n \vec{a}_n}\\
\amp = c(A\vec{u})
\end{align*}