Inverse trigonometric substitution is a technique used to evaluate integrals that contain expressions of the form \(\sqrt{a^2 - x^2}\text{,}\)\(\sqrt{x^2 - a^2}\text{,}\) or \(\sqrt{a^2 + x^2}\text{.}\) This method uses trigonometric identities to simplify these integrals.
Subsection1.1.1Summary of Inverse Trigonometric Substitution
Table1.1.1.
\(\text{form}\)
\(\text{substitution}\)
\(\text{conversion}\)
\(\text{triangle}\)
\(\sqrt{a^2 - x^2}\)
\(x = a \sin{\theta}\)
\(\sqrt{a^2 - x^2} \rightarrow a \cos{\theta}\)
\(\sqrt{a^2 - x^2}, x, a\)
\(\sqrt{a^2 + x^2}\)
\(x = a \tan{\theta}\)
\(\sqrt{a^2 + x^2} \rightarrow a \sec{\theta}\)
\(x, a, \sqrt{a^2 + x^2}\)
\(\sqrt{x^2 - a^2}\)
\(x = a \sec{\theta}\)
\(\sqrt{x^2 - a^2} \rightarrow a \tan{\theta}\)
\(\sqrt{x^2 - a^2}, a, x\)
Identify the form of the substitution (sine, tangent, or secant).
Apply the substitution. Sketch a right triangle and label the sides, to represent the relationships between \(x, a\) and \(\theta\text{.}\)
Simplify the integral.
Integrate with the new variable \(\theta\text{,}\) using previous strategies, typically a trigonometric integral.
Back-substitute using the inverse trigonometric function to substitute back for \(x\text{.}\)