Find the interval of convergence and radius of convergence of each series.
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{3(x+1)^n}{n \cdot 4^n}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{(x-3)^n}{n^2}\)
-
\(\displaystyle \sum_{n=1}^{\infty} n! (2x + 1)^n\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{x^n}{n}\)
-
\(\displaystyle \sum_{n=1}^{\infty} (-1)^n n x^n\)
-
\(\displaystyle \sum_{n=1}^{\infty} \sqrt{n} \, x^n\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{\sqrt[3]{n}}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{n}{5^n} x^n\)
-
\(\displaystyle \sum_{n=2}^{\infty} \frac{5^n}{n} x^n\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{x^n}{n 3^n}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{n}{n+1} x^n\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{x^n}{2n-1}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n^2}\)
-
\(\displaystyle \sum_{n=1}^{\infty} n^n x^n\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{x^n}{n 4^n}\)
-
\(\displaystyle \sum_{n=1}^{\infty} 2^n n^2 x^n\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{(-1)^n 4^n}{\sqrt{n}} x^n\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n 5^n} x^n\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{n}{2^n (n^2+1)} x^n\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{x^{2n}}{n!}\)
-
\(\displaystyle \sum_{n=0}^{\infty} \frac{(x-2)^n}{n^2+1}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1) 2^n} (x-1)^n\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{1 + n}{n^3 2^n} x^n\)
-
\(\displaystyle \sum_{n=0}^{\infty} \frac{(x + 1)^n}{n 2^n}\)
-
\(\displaystyle \sum_{n=0}^{\infty} n! x^n\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{(x-1)^n}{n^3 \cdot 3^n}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{\sqrt{n} \cdot (x+6)^n}{8^n}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{2}{3^n (x-1)^{n+1}}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{(4x+5)^n}{n^2}\)
-
\(\displaystyle \sum_{n=2}^{\infty} \frac{(x+2)^n}{2^n \ln n}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{(x-2)^n}{n^n}\)
-
\(\displaystyle \sum_{n=4}^{\infty} \frac{\ln n}{n} x^n\)
-
\(\displaystyle \sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n} x^n\)
-
\(\displaystyle \sum_{n=1}^{\infty} n!(2x-1)^n\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{(5x-4)^n}{n^3}\)
-
\(\displaystyle \sum_{n=2}^{\infty} \frac{x^{2n}}{n (\ln n)^2}\)
-
\(\displaystyle \sum_{n=0}^{\infty} (x+5)^n\)
-
\(\displaystyle \sum_{n=0}^{\infty} (-1)^n(4x+1)^n\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{(3x-2)^n}{n}\)
-
\(\displaystyle \sum_{n=0}^{\infty} \frac{(x-2)^n}{10^n}\)
-
\(\displaystyle \sum_{n=0}^{\infty} (2x)^n\)
-
\(\displaystyle \sum_{n=0}^{\infty} \frac{n x^n}{n+2}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{(-1)^n(x+2)^n}{n}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{x^n}{n\sqrt{n}\,3^n}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{(x-1)^n}{\sqrt{n}}\)
-
\(\displaystyle \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!}\)
-
\(\displaystyle \sum_{n=0}^{\infty} \frac{3^n x^n}{n!}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{4^n x^{2n}}{n}\)
-
\(\displaystyle \sum_{n=0}^{\infty} \frac{x^n}{\sqrt{n^2+3}}\)
-
\(\displaystyle \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{\sqrt{n}+3}\)
-
\(\displaystyle \sum_{n=0}^{\infty} \frac{n(x+3)^n}{5^n}\)
-
\(\displaystyle \sum_{n=0}^{\infty} \frac{n x^n}{4^n (n^2+1)}\)
-
\(\displaystyle \sum_{n=0}^{\infty} \frac{\sqrt{n}\,x^n}{3^n}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \sqrt[n]{n}\,(2x+5)^n\)
-
\(\displaystyle \sum_{n=1}^{\infty} \bigl(2+(-1)^n\bigr)\,(x+1)^{n-1}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{(-1)^n 3^{2n}(x-2)^n}{3n}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \left(1+\frac{1}{n}\right)^n x^n\)
-
\(\displaystyle \sum_{n=1}^{\infty} (\ln n)\,x^n\)
-
\(\displaystyle \sum_{n=0}^{\infty} n! (x-4)^n\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x+2)^n}{n\,2^n}\)
-
\(\displaystyle \sum_{n=0}^{\infty} (-2)^n (n+1) (x-1)^n\)
-
\(\displaystyle \sum_{n=0}^{\infty} \left(\frac{x}{4}\right)^n\)
-
\(\displaystyle \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n}\)
-
\(\displaystyle \sum_{n=0}^{\infty} (-1)^{n+1} (n+1)x^n\)
-
\(\displaystyle \sum_{n=0}^{\infty} \frac{5^n}{n!}\)
-
\(\displaystyle \sum_{n=0}^{\infty} \frac{(3x)^n}{(2n)!}\)
-
\(\displaystyle \sum_{n=0}^{\infty} (2n)! \left(\frac{x}{3}\right)^n\)
-
\(\displaystyle \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{(n+1)(n+2)}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{6^n}\)
-
\(\displaystyle \sum_{n=0}^{\infty} \frac{(-1)^n n! (x-5)^n}{3^n}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-4)^n}{n 9^n}\)
-
\(\displaystyle \sum_{n=0}^{\infty} \frac{(x-3)^{n+1}}{(n+1)4^{n+1}}\)
-
\(\displaystyle \sum_{n=0}^{\infty} \frac{(-1)^{n+1}(x-1)^{n+1}}{n+1}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-2)^n}{n 2^n}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{(x-3)^{n-1}}{3^{n-1}}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{n}{n+1} (-2x)^{n-1}\)
-
\(\displaystyle \sum_{n=0}^{\infty} \frac{x^{3n+1}}{(3n+1)!}\)
-
\(\displaystyle \sum_{n=1}^{\infty} \frac{n! x^n}{(2n)!}\)
