Consider the function
\(f(x) = \frac{x^2}{(1+x)^3}\text{.}\) Notice that the denominator is similar to
\(1-x\text{,}\) except it is
\(1+x\text{,}\) and cubed. Then, the entire expression is multiplied by
\(x^2\text{.}\)
Start with the geometric series, and first replace
\(x\) with
\(-x\text{,}\) to get
\(1+x\) in the denominator,
\begin{align*}
\frac{1}{1 + x} \amp = \sum_{n=0}^{\infty} (-x)^n \\\
\amp = \sum_{n=0}^{\infty} (-1)^n x^n
\end{align*}
Then, differentiate both sides, like before,
\begin{align*}
-\frac{1}{(1+x)^2} \amp = \sum_{n=1}^{\infty} (-1)^n n x^{n-1}
\end{align*}
Then, differentiate again,
\begin{align*}
\frac{2}{(1+x)^3} \amp = \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2}
\end{align*}
Then, we want the numerator to be
\(x^2\) instead of 2, so we can divide both sides by 2, and multiply both sides by
\(x^2\text{,}\)
\begin{align*}
\frac{x^2}{(1+x)^3} \amp = \sum_{n=2}^{\infty} (-1)^n \frac{n(n-1)}{2} x^n \\\
\amp = x^2 - 3x^3 + 6x^4 - 10x^5 + \dots
\end{align*}