Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\abs}[1]{\left\lvert #1 \right\rvert}
\newcommand{\set}[1]{\left\{ #1 \right\}}
\renewcommand{\neg}{\sim}
\newcommand{\brac}[1]{\left( #1 \right)}
\newcommand{\eval}[1]{\left. #1 \right|}
\newcommand{\Area}[1]{\operatorname{Area}\left( #1 \right)}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\csch}{csch}
\DeclareMathOperator{\sech}{sech}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 2.1 Increasing and Decreasing Functions
Derivatives provide a lot of information about the shape of a function’s graph. First, we will analyze whether functions are increasing or decreasing.
Subsection 2.1.1 Increasing and Decreasing Functions
Recall what it means for a function to be increasing or decreasing.
Definition 2.1.1 . Increasing and decreasing functions.
A function
\(f\) is
increasing if when
\(x\) increases,
\(f(x)\) increases.
A function
\(f\) is
decreasing if when
\(x\) increases,
\(f(x)\) decreases.
\begin{gather*}
\boxed{\begin{array}{c}
\text{increasing} \ \iff x \uparrow y \uparrow \\
\text{decreasing} \ \iff x \uparrow y \downarrow
\end{array}}
\end{gather*}
Subsection 2.1.2 Increasing/Decreasing Test (Positive Derivative Implies Increasing)
Increasing and decreasing directly relate to derivatives. Recall that the value of the derivative
\(f'\) represents the slope of the tangent line of
\(f\text{.}\) This means that,
If
\(f'(x) \gt 0\text{,}\) then the tangent line has positive slope, and its graph is sloping up to the right, and so is increasing.
Similarly, if
\(f'(x) \lt 0\text{,}\) then the tangent line has negative slope, and so
\(f\) is decreasing.
Theorem 2.1.3 . Positive derivative implies increasing.
If
\(f'(x) \gt 0\) for all
\(x \in (a,b)\text{,}\) then
\(f\) is
increasing on
\((a,b)\text{.}\)
If
\(f'(x) \lt 0\) for all
\(x \in (a,b)\text{,}\) then
\(f\) is
decreasing on
\((a,b)\text{.}\)
If
\(f'(x) = 0\) for all
\(x \in (a,b)\text{,}\) then
\(f\) is
constant on
\((a,b)\text{.}\)
\begin{gather*}
\boxed{\begin{array}{c}
f' \gt 0 \ \iff \text{increasing} \\
f' \lt 0 \ \iff \text{decreasing}
\end{array}}
\end{gather*}
Graphically, these statements are intuitively true. However, a proof requires the mean value theorem, which we will cover later on.
Subsection 2.1.3 Finding Intervals of Increase and Decrease
Exercise Group 2.1.1 . Basic Examples.
(a)
Hint . Answer .
increasing:
\((-\infty,0)\text{,}\) decreasing:
\((0,\infty)\)
(b)
Hint . Answer .
increasing:
\((-\infty,-1),(1,\infty)\text{,}\) decreasing:
\((-1,1)\)
(c)
Hint . Answer .
increasing:
\((-\infty,-1),(0,\infty)\text{,}\) decreasing:
\((-1,0)\)
(d)
Hint . Answer .
increasing:
\((0,\infty)\text{,}\) decreasing:
\((-\infty,0)\)
(e)
Hint . Answer .
increasing:
\((-\infty,\infty)\text{,}\) decreasing: none
(f)
Hint . Answer .
increasing:
\((1,\infty)\text{,}\) decreasing:
\((-\infty,1)\)
(g)
\(f(x)=\frac{x^3}{3}-\frac{5x^2}{2}+4x\)
Hint . Answer .
increasing:
\((-\infty,1),(4,\infty)\text{,}\) decreasing:
\((1,4)\)
(h)
\(f(x)=-\frac{x^3}{3}+\frac{x^2}{2}+2x\)
Hint . Answer .
increasing:
\((-1,2)\text{,}\) decreasing:
\((-\infty,-1),(2,\infty)\)
(i)
Hint . Answer .
increasing:
\((-\infty,\frac{1}{2})\text{,}\) decreasing:
\((\frac{1}{2},\infty)\)
Exercise Group 2.1.2 . More Polynomial Examples.
(a)
Hint . Answer .
increasing:
\((0,1),(2,\infty)\text{,}\) decreasing:
\((-\infty,0),(1,2)\)
(b)
\(f(x)=-\frac{x^4}{4}+x^3-x^2\)
Hint . Answer .
increasing:
\((-\infty,0),(1,2)\text{,}\) decreasing:
\((0,1),(2,\infty)\)
(c)
\(f(x)=3x^4+4x^3-12x^2+2\)
Hint . Answer .
increasing:
\((-2,0),(1,\infty)\text{,}\) decreasing:
\((-\infty,-2),(0,1)\)
(d)
\(f(x)=2x^5-\frac{15x^4}{4}+\frac{5x^3}{3}\)
Hint .
\(f'(x)=5x^2(2x-1)(x-1)\)
Answer .
increasing:
\((-\infty,\frac{1}{2}),(1,\infty)\text{,}\) decreasing:
\((\frac{1}{2},1)\)
(e)
\(f(x)=-12x^5+75x^4-80x^3\)
Hint .
\(f'(x)=-60x^2(x-1)(x-4)\)
Answer .
increasing:
\((1,4)\text{,}\) decreasing:
\((-\infty,1),(4,\infty)\)
(f)
Hint .
\(f'(x)=-2x(2x-1)(2x+1)\)
Answer .
increasing:
\((-\infty,-\frac{1}{2}),(0,\frac{1}{2})\text{,}\) decreasing:
\((-\frac{1}{2},0),(\frac{1}{2},\infty)\)
(g)
\(f(x)=\frac{x^4}{4}-\frac{8x^3}{3}+\frac{15x^2}{2}+8\)
Hint . Answer .
increasing:
\((0,3),(5,\infty)\text{,}\) decreasing:
\((-\infty,0),(3,5)\)
Exercise Group 2.1.3 . Trigonometry Examples.
(a)
\(f(x)=-2\cos x-x\) on
\([0,2\pi]\)
Hint . Answer .
increasing:
\((\frac{\pi}{6},\frac{5\pi}{6})\text{,}\) decreasing:
\((0,\frac{\pi}{6}),(\frac{5\pi}{6},2\pi)\)
(b)
\(f(x)=\sqrt{2}\sin x-x\) on
\([0,2\pi]\)
Hint .
\(f'(x)=\sqrt{2}\cos x-1\)
Answer .
increasing:
\((0,\frac{\pi}{4}),(\frac{7\pi}{4},2\pi)\text{,}\) decreasing:
\((\frac{\pi}{4},\frac{7\pi}{4})\)
(c)
\(f(x)=\cos^2 x\) on
\([-\pi,\pi]\)
Hint .
\(f'(x)=-2\sin x\cos x=-\sin 2x\)
Answer .
increasing:
\((-\frac{\pi}{2},0),(\frac{\pi}{2},\pi)\text{,}\) decreasing:
\((-\pi,-\frac{\pi}{2}),(0,\frac{\pi}{2})\)
(d)
\(f(x)=3\cos 3x\) on
\([-\pi,\pi]\)
Hint . Answer .
increasing:
\((-\pi,-\frac{2\pi}{3}),(-\frac{\pi}{3},0),(\frac{\pi}{3},\frac{2\pi}{3})\text{,}\) decreasing:
\((-\frac{2\pi}{3},-\frac{\pi}{3}),(0,\frac{\pi}{3}),(\frac{2\pi}{3},\pi)\)
Exercise Group 2.1.4 . More Examples.
(a)
Hint .
\(f'(x)=\frac{x}{\sqrt{x^2-4}}\)
Answer .
increasing:
\((2,\infty)\text{,}\) decreasing:
\((-\infty,-2)\)
(b)
Hint . Answer .
increasing:
\((-\infty,1)\text{,}\) decreasing:
\((1,\infty)\)
(c)
Hint . Answer .
increasing:
\((-1,\infty)\text{,}\) decreasing:
\((-\infty,-1)\)
(d)
Hint .
\(f'(x)=2x-\frac{2}{x}=\frac{2(x-1)(x+1)}{x}\)
Answer .
increasing:
\((1,\infty)\text{,}\) decreasing:
\((0,1)\)
(e)
\(f(x)=\sqrt{x}\cdot\ln x\)
Hint .
\(f'(x)=\frac{\ln x+2}{2\sqrt{x}}\)
Answer .
increasing:
\((\frac{1}{e^2},\infty)\text{,}\) decreasing:
\((0,\frac{1}{e^2})\)
(f)
\(f(x)=\frac{e^x}{e^{2x}+1}\)
Hint .
\(f'(x)=\frac{e^x(1-e^{2x})}{(e^{2x}+1)^2}\)
Answer .
increasing:
\((-\infty,0)\text{,}\) decreasing:
\((0,\infty)\)
(g)
\(f(x)=x\ln x-2x+3\) on
\((0,\infty)\)
Hint . Answer .
increasing:
\((e,\infty)\text{,}\) decreasing:
\((0,e)\)
(h)
Hint .
\(f'(x)=e^{-x^2/2}(1-x^2)\)
Answer .
increasing:
\((-1,1)\text{,}\) decreasing:
\((-\infty,-1),(1,\infty)\)
(i)
Hint .
\(f'(x)=\frac{1-x^2}{(x^2+1)^2}\)
Answer .
increasing:
\((-1,1)\text{,}\) decreasing:
\((-\infty,-1),(1,\infty)\)
(j)
Hint .
\(f'(x)=\frac{x}{\sqrt{x^2+4}}\)
Answer .
increasing:
\((0,\infty)\text{,}\) decreasing:
\((-\infty,0)\)
(k)
\(f(x)=\frac{5x}{x^2+1}\)
Hint .
\(f'(x)=\frac{-5(x^2-1)}{(x^2+1)^2}\)
Answer .
increasing:
\((-1,1)\text{,}\) decreasing:
\((-\infty,-1),(1,\infty)\)
(l)
\(f(x)=\frac{2x}{x^2+9}\)
Hint .
\(f'(x)=\frac{2(9-x^2)}{(x^2+9)^2}=-\frac{2(x-3)(x+3)}{(x^2+9)^2}\)
Answer .
increasing:
\((-3,3)\text{,}\) decreasing:
\((-\infty,-3),(3,\infty)\)
(m)
Hint .
\(f'(x)=1-\frac{1}{x^2}=\frac{x^2-1}{x^2}\)
Answer .
increasing:
\((-\infty,-1),(1,\infty)\text{,}\) decreasing:
\((-1,0),(0,1)\)
(n)
\(f(x)=\frac{x-1}{x^2+3}\)
Hint .
\(f'(x)=-\frac{(x-3)(x+1)}{(x^2+3)^2}\)
Answer .
increasing:
\((-1,3)\text{,}\) decreasing:
\((-\infty,-1),(3,\infty)\)
Exercise Group 2.1.5 . Advanced Examples.
(a)
Hint .
\(f'(x)=2(2x-1)(4x-9)(x+2)\)
Answer .
increasing:
\((-2,\frac{1}{2}),(\frac{9}{4},\infty)\text{,}\) decreasing:
\((-\infty,-2),(\frac{1}{2},\frac{9}{4})\)
(b)
\(f(x)=\tan^{-1}\brac{\frac{x}{x^2+2}}\)
Hint .
\(f'(x)=\frac{2-x^2}{x^4+5x^2+4}\)
Answer .
increasing:
\((-\sqrt{2},\sqrt{2})\text{,}\) decreasing:
\((-\infty,-\sqrt{2}),(\sqrt{2},\infty)\)
(c)
\(f(x)=\sqrt{9-x^2}+\sin^{-1}\brac{\frac{x}{3}}\)
Hint .
\(f'(x)=\frac{1-x}{\sqrt{9-x^2}}\)
Answer .
increasing:
\((-3,1)\text{,}\) decreasing:
\((1,3)\)