Skip to main content

Section 2.3 Sketching Graphs of Functions

Subsection 2.3.1 Examples

Exercise Group 2.3.1. Polynomials.

Sketch the graph of each function.
(a)
\(f(x)=x^2-4x+3\)
Hint.
\(f'(x)=2x-4\text{,}\) \(f''(x)=2\text{.}\)
Answer.
increasing: \((2,\infty)\text{,}\) decreasing: \((-\infty,2)\text{,}\) local maxima: none, local minima: \((2,-1)\text{,}\) concave up: \((-\infty,\infty)\text{,}\) concave down: none, inflection point(s): none.
(b)
\(f(x)=x^3-3x+3\)
Hint.
\(f'(x)=3(x-1)(x+1)\text{,}\) \(f''(x)=6x\text{.}\)
Answer.
increasing: \((-\infty,-1),(1,\infty)\text{,}\) decreasing: \((-1,1)\text{,}\) local maxima: \((-1,5)\text{,}\) local minima: \((1,1)\text{,}\) concave up: \((0,\infty)\text{,}\) concave down: \((-\infty,0)\text{,}\) inflection point(s): \((0,3)\text{.}\)
(c)
\(f(x)=2x^3-9x^2+12x-3\)
Hint.
\(f'(x)=6(x-1)(x-2)\text{,}\) \(f''(x)=12x-18\text{.}\)
Answer.
increasing: \((-\infty,1),(2,\infty)\text{,}\) decreasing: \((1,2)\text{,}\) local maxima: \((1,2)\text{,}\) local minima: \((2,1)\text{,}\) concave down: \((-\infty,\frac{3}{2})\text{,}\) concave up: \((\frac{3}{2},\infty)\text{,}\) inflection point(s): \(\brac{\frac{3}{2},\frac{3}{2}}\text{.}\)
(d)
\(f(x)=x^4-2x^2\)
Hint.
\(f'(x)=4x(x-1)(x+1)\text{,}\) \(f''(x)=4(3x^2-1)\text{.}\)
Answer.
increasing: \((-1,0),(1,\infty)\text{,}\) decreasing: \((-\infty,-1),(0,1)\text{,}\) local maxima: \((0,0)\text{,}\) local minima: \((-1,-1),(1,-1)\text{,}\) concave up: \((-\infty,-\frac{\sqrt3}{3}),(\frac{\sqrt3}{3},\infty)\text{,}\) concave down \((-\frac{\sqrt3}{3},\frac{\sqrt3}{3})\text{,}\) inflection point(s): \((\pm\frac{\sqrt3}{3},-\frac{5}{9})\text{.}\)
(e)
\(f(x)=x(x-4)^3\)
Hint.
\(f'(x)=4(x-4)^2(x-1)\text{,}\) \(f''(x)=12(x-4)(x-2)\text{.}\)
Answer.
\(x\)-intercepts \(x=0,4\text{,}\) \(y\)-intercept: \(y=0\text{,}\) increasing: \((1,\infty)\text{,}\) decreasing: \((-\infty,1)\text{,}\) local minima: \((1,-27)\text{,}\) local maxima: none, concave up: \((-\infty,2),(4,\infty)\text{,}\) concave down: \((2,4)\text{,}\) inflection point(s): \((2,-16),(4,0)\text{.}\)

Exercise Group 2.3.2. Rational Functions (Vertical Asymptotes).

Sketch the graph of each function.
(a)
\(f(x)=\frac{x}{9-x^2}\)
Hint.
\(f'(x)=\frac{x^2+9}{(9-x^2)^2}\text{,}\) \(f''(x)=-\frac{2x(x^2+27)}{(9-x^2)^3}\text{.}\)
Answer.
domain: \((-\infty,-3),(-3,3),(3,\infty)\text{,}\) \(x\)-intercepts \(x=0\text{,}\) \(y\)-intercept: \(y=0\text{,}\) increasing: \((-\infty,-3),(-3,3),(3,\infty)\text{,}\) decreasing: none, local minima: none, local maxima: none, concave up: \((-\infty,-3),(0,3)\text{,}\) concave down: \((-3,0),(3,\infty)\text{.}\)
(b)
\(f(x)=\frac{x}{x^2-4x+4}\)
Hint.
\(f(x)=\frac{x}{(x-2)^2}\text{,}\) \(f'(x)=\frac{-(x+2)}{(x-2)^3}\text{,}\) \(f''(x)=\frac{2(x+4)}{(x-2)^4}\text{.}\)
Answer.
domain: \((-\infty,2)\cup(2,\infty)\text{,}\) \(x\)-intercept: \(x=0\text{,}\) \(y\)-intercept: \(y=0\text{,}\) vertical asymptote \(x=2\text{,}\) horizontal asymptote \(y=0\text{,}\) increasing \((-2,2)\text{,}\) decreasing \((-\infty,-2)\cup(2,\infty)\text{,}\) local minima: \((-2,-\frac{1}{8})\text{,}\) local maxima: none, concave down: \((-\infty,-4)\text{,}\) concave up: \((-4,2)\cup(2,\infty)\text{,}\) inflection point: \((-4,-\frac{1}{9})\text{.}\)
(c)
\(f(x)=\frac{x}{x^2+1}\)
Hint.
\(f'(x)=\frac{1-x^2}{(x^2+1)^2}\text{,}\) \(f''(x)=\frac{2x(x^2-3)}{(x^2+1)^3}\text{.}\)
Answer.
domain: \((-\infty,\infty)\text{,}\) \(x\)-intercept \(x=0\text{,}\) \(y\)-intercept: \(y=0\text{,}\) increasing: \((-1,1)\text{,}\) decreasing: \((-\infty,-1),(1,\infty)\text{,}\) local max: \((1,\frac{1}{2})\text{,}\) local min: \((-1,-\frac{1}{2})\text{,}\) concave up: \((-\sqrt{3},0),(\sqrt{3},\infty)\text{,}\) concave down: \((-\infty,-\sqrt{3}),(0,\sqrt{3})\text{,}\) inflection points: \(\brac{-\sqrt{3},-\frac{\sqrt{3}}{4}},(0,0),\brac{\sqrt{3},\frac{\sqrt{3}}{4}}\text{.}\)
(d)
\(f(x)=\frac{x^2-49}{x^2+5x-14}\)
Hint.
\(f'(x)=\frac{5}{(x-2)^2}\text{,}\) \(f''(x)=-\frac{10}{(x-2)^3}\text{.}\)
Answer.
domain \((-\infty,-7),(-7,2),(2,\infty)\text{,}\) \(x\)-intercept \(x=7\text{,}\) \(y\)-intercept: \(y=\frac{7}{2}\text{,}\) vertical asymptote: \(x=2\text{,}\) hole: \((-7,\frac{14}{9})\text{,}\) horizontal asymptote: \(y=1\text{,}\) increasing: \((-\infty,-7),(-7,2),(2,\infty)\text{,}\) decreasing: none, local minima: none, local maxima: none, concave up: \((-\infty,-7),(-7,2)\text{,}\) concave down: \((2,\infty)\text{.}\)

Exercise Group 2.3.3. Trigonometric Functions.

Sketch the graph of each function.
(a)
\(f(x)=\sin x+\cos x\text{,}\) \(0\leq x\leq 2\pi\)
Hint.
\(f'(x)=\cos x-\sin x\text{,}\) \(f''(x)=-(\sin x+\cos x)\text{.}\)
Answer.
\(x\)-intercepts \(x=\frac{3\pi}{4},\frac{7\pi}{4}\text{,}\) \(y\)-intercept: \(y=1\text{,}\) increasing: \((0,\frac{\pi}{4}),(\frac{5\pi}{4},2\pi)\text{,}\) decreasing: \((\frac{\pi}{4},\frac{5\pi}{4})\text{,}\) local max: \(\brac{\frac{\pi}{4},\sqrt{2}}\text{,}\) local min: \(\brac{\frac{5\pi}{4},-\sqrt{2}}\text{,}\) concave down: \((0,\frac{3\pi}{4}),(\frac{7\pi}{4},2\pi)\text{,}\) concave up: \((\frac{3\pi}{4},\frac{7\pi}{4})\text{,}\) inflection points: \((\frac{3\pi}{4},0),(\frac{7\pi}{4},0)\text{.}\)
(b)
\(f(x)=2\cos x+\cos^2 x\text{,}\) \(0\leq x\leq 2\pi\)
Hint.
\(f'(x)=-2\sin x(1+\cos x)\text{,}\) \(f''(x)=-2(\cos x+\cos 2x)\text{.}\)
Answer.
\(x\)-intercepts \(x=\frac{\pi}{2},\frac{3\pi}{2}\text{,}\) \(y\)-intercept 3, decreasing: \((0,\pi)\text{,}\) increasing: \((\pi,2\pi)\text{,}\) local min: \((\pi,-1)\text{,}\) local maxima: none, concave down: \((0,\frac{\pi}{3}),(\frac{5\pi}{3},2\pi)\text{,}\) concave up: \((\frac{\pi}{3},\frac{5\pi}{3})\text{,}\) inflection points: \(\brac{\frac{\pi}{3},\frac{5}{4}},\brac{\frac{5\pi}{3},\frac{5}{4}}\text{.}\)
(c)
\(f(x)=x+\sin x\text{,}\) \(0\leq x\leq 2\pi\)
Hint.
\(f'(x)=1+\cos x\text{,}\) \(f''(x)=-\sin x\text{.}\)
Answer.
domain \([0,2\pi]\text{,}\) \(x\)-intercepts \(x=0\text{,}\) \(y\)-intercept 0, increasing \((0,\pi),(\pi,2\pi)\text{,}\) decreasing none, local minima none, local maxima none, concave down \((0,\pi)\text{,}\) concave up \((\pi,2\pi)\text{,}\) inflection point \((\pi,\pi)\text{.}\)
(d)
\(f(x)=\sin x\cos x\text{,}\) \(0\leq x\leq \pi\)
Hint.
\(f'(x)=\cos^2{x}-\sin^2{x}\text{,}\) \(f''(x)=-4\sin{x}\cos{x}\text{.}\)
Answer.
domain \([0,\pi]\text{,}\) \(x\)-intercepts \(x=0,\frac{\pi}{2},\pi\text{,}\) \(y\)-intercept 0, increasing \((0,\frac{\pi}{4}),(\frac{3\pi}{4},\pi)\text{,}\) decreasing \((\frac{\pi}{4},\frac{3\pi}{4})\text{,}\) local maxima \((\frac{\pi}{4},\frac{1}{2})\text{,}\) local minima \((\frac{3\pi}{4},-\frac{1}{2})\text{,}\) concave down \((0,\frac{\pi}{2})\text{,}\) concave up \((\frac{\pi}{2},\pi)\text{,}\) inflection point \((\frac{\pi}{2},0)\text{.}\)
(e)
\(f(x)=x-\sin x\text{,}\) \(0\leq x\leq 2\pi\)
Hint.
\(f'(x)=1-\cos x\text{,}\) \(f''(x)=\sin x\text{.}\)
Answer.
increasing \((0,2\pi)\text{,}\) decreasing none, local minima none, local maxima none, concave up \((0,\pi)\text{,}\) concave down \((\pi,2\pi)\text{,}\) inflection point \((\pi,\pi)\text{.}\)
(f)
\(f(x)=\sqrt3 x-2\cos x\text{,}\) \(0\leq x\leq 2\pi\)
Hint.
\(f'(x)=\sqrt3+2\sin x\text{,}\) \(f''(x)=2\cos x\text{.}\)
Answer.
domain \([0,2\pi]\text{,}\) \(y\)-intercept \(-2\text{,}\) increasing \((0,\frac{4\pi}{3}),(\frac{5\pi}{3},2\pi)\text{,}\) decreasing \((\frac{4\pi}{3},\frac{5\pi}{3})\text{,}\) local maxima \((\frac{4\pi}{3},\frac{4\pi\sqrt3}{3}+1)\text{,}\) local minima \((\frac{5\pi}{3},\frac{5\pi\sqrt3}{3}-1)\text{,}\) concave up \((0,\frac{\pi}{2}),(\frac{3\pi}{2},2\pi)\text{,}\) concave down \((\frac{\pi}{2},\frac{3\pi}{2})\text{,}\) inflection points \((\frac{\pi}{2},\frac{\pi\sqrt3}{2})\) and \((\frac{3\pi}{2},\frac{3\pi\sqrt3}{2})\text{.}\)
(g)
\(f(x)=\cos^2 x-2\sin x\text{,}\) \(0\leq x\leq 2\pi\)
Hint.
\(f'(x)=-2\cos x(\sin x+1)\text{,}\) \(f''(x)=2(\sin x-\cos 2x)\text{.}\)
Answer.
\(y\)-intercept 1, increasing: \((\frac{\pi}{2},\frac{3\pi}{2})\text{,}\) decreasing: \((0,\frac{\pi}{2}),(\frac{3\pi}{2},2\pi)\text{,}\) local min: \(\brac{\frac{\pi}{2},-2}\text{,}\) local max: \((\frac{3\pi}{2},2)\text{,}\) concave down: \((0,\frac{\pi}{6}),(\frac{5\pi}{6},2\pi)\text{,}\) concave up: \((\frac{\pi}{6},\frac{5\pi}{6})\text{,}\) inflection points: \(\brac{\frac{\pi}{6},\frac{5}{4}},\brac{\frac{5\pi}{6},-\frac{3}{4}}\text{.}\)

Exercise Group 2.3.4. Vertical Tangents and Cusps.

Sketch the graph of each function.
(a)
\(f(x)=2x-3x^{2/3}\)
Hint.
\(f'(x) = 2-\frac{2}{\sqrt[3]{x}}\text{,}\) \(f''(x) = \frac{2}{3x^{4/3}}\text{.}\)
Answer.
domain \((-\infty,\infty)\text{,}\) \(x\)-intercepts \(x = 0,\frac{27}{8}\text{,}\) \(y\)-intercept 0, increasing: \((-\infty,0),(1,\infty)\text{,}\) decreasing: \((0,1)\text{,}\) local minima: \((1,-1)\text{,}\) local maxima: \((0,0)\text{,}\) concave up: \((-\infty,0),(0,\infty)\text{,}\) concave down: none.
(b)
\(f(x)=(x-4)^{2/3}\)
Hint.
\(f'(x)=\frac{2}{3(x-4)^{1/3}}\text{,}\) \(f''(x)=\frac{-2}{9(x-4)^{4/3}}\text{.}\)
Answer.
domain \((-\infty,\infty)\text{,}\) \(x\)-intercept \(x=4\text{,}\) \(y\)-intercept \(4^{2/3}\text{,}\) decreasing \((-\infty,4)\text{,}\) increasing \((4,\infty)\text{,}\) local minimum \((4,0)\text{,}\) concave down \((-\infty,4),(4,\infty)\text{,}\) concave up none, inflection points none.
(c)
\(f(x) = 5x^{2/5} - 2x\)
Hint.
\(f'(x) = \frac{2}{x^{3/5}}-2\text{,}\) \(f''(x) = -\frac{6}{5x^{8/5}}\text{.}\)
Answer.
domain \((-\infty,\infty)\text{,}\) \(x\)-intercepts \(x = 0,\left(\frac{5}{2}\right)^{5/3}\text{,}\) \(y\)-intercept 0, increasing: \((0,1)\text{,}\) decreasing: \((-\infty,0),(1,\infty)\text{,}\) local minima: \((0,0)\text{,}\) local maxima: \((1,3)\text{,}\) concave up: none, concave down: \((-\infty,0),(0,\infty)\text{.}\)
(d)
\(f(x)=x^{1/3}(x+3)^{2/3}\)
Hint.
\(f'(x)=\frac{x+1}{x^{2/3}(x+3)^{1/3}}\text{,}\) \(f''(x)=\frac{-2}{x^{5/3}(x+3)^{4/3}}\text{.}\)
Answer.
domain \((-\infty,\infty)\text{,}\) \(x\)-intercepts \(x=-3,0\text{,}\) \(y\)-intercept 0, increasing \((-\infty,-3),(-1,0),(0,\infty)\text{,}\) decreasing \((-3,-1)\text{,}\) local maximum \((-3,0)\text{,}\) local minimum \((-1,-2^{2/3})\text{,}\) concave up \((-\infty,0)\text{,}\) concave down \((0,\infty)\text{,}\) inflection point \((0,0)\text{.}\)

Exercise Group 2.3.5. Slant Asymptotes.

Sketch the graph of each function.
(a)
\(f(x)=\frac{x^2}{x+1}\)
Hint.
\(f'(x)=\frac{x(x+2)}{(x+1)^2}\text{,}\) \(f''(x)=\frac{2}{(x+1)^3}\text{.}\)
Answer.
domain: \((-\infty,-1)\cup(-1,\infty)\text{,}\) \(x\)-intercept: \(x=0\text{,}\) \(y\)-intercept: \(y=0\text{,}\) vertical asymptote: \(x=-1\text{,}\) slant asymptote: \(y=x-1\text{,}\) increasing \((-\infty,-2),(0,\infty)\text{,}\) decreasing \((-2,-1),(-1,0)\text{,}\) local maxima \((-2,-4)\text{,}\) local minima \((0,0)\text{,}\) concave down \((-\infty,-1)\text{,}\) concave up \((-1,\infty)\text{.}\)
(b)
\(f(x)=\frac{x^2-x+1}{x-1}\)
Hint.
\(f'(x)=\frac{x(x-2)}{(x-1)^2}\text{,}\) \(f''(x)=\frac{2}{(x-1)^3}\text{.}\)
Answer.
domain \((-\infty,1)\cup(1,\infty)\text{,}\) \(x\)-intercepts none, \(y\)-intercept \(-1\text{,}\) vertical asymptote \(x=1\text{,}\) slant asymptote \(y=x\text{,}\) increasing \((-\infty,0)\cup(2,\infty)\text{,}\) decreasing \((0,1)\cup(1,2)\text{,}\) local maxima \((0,-1)\text{,}\) local minima \((2,3)\text{,}\) concave down \((-\infty,1)\text{,}\) concave up \((1,\infty)\text{.}\)
(c)
\(f(x)=\frac{x^2-3x+2}{x-3}\)
Hint.
\(f(x)=x+\frac{2}{x-3}\text{,}\) \(f'(x)=1-\frac{2}{(x-3)^2}\text{,}\) \(f''(x)=\frac{4}{(x-3)^3}\text{.}\)
Answer.
domain \((-\infty,3)\cup(3,\infty)\text{,}\) \(x\)-intercepts \(x=1,2\text{,}\) \(y\)-intercept \(-\frac{2}{3}\text{,}\) vertical asymptote \(x=3\text{,}\) slant asymptote \(y=x\text{,}\) increasing \((-\infty,3-\sqrt{2})\cup(3+\sqrt{2},\infty)\text{,}\) decreasing \((3-\sqrt{2},3)\cup(3,3+\sqrt{2})\text{,}\) local maximum \((3-\sqrt{2},3-2\sqrt{2})\text{,}\) local minimum \((3+\sqrt{2},3+2\sqrt{2})\text{,}\) concave down \((-\infty,3)\text{,}\) concave up \((3,\infty)\text{,}\) inflection points none.
(d)
\(f(x)=\frac{x^3-3x^2+3x-1}{x^2+x-2}\)
Hint.
\(f'(x)=\frac{(x-1)(x+5)}{(x+2)^2}\text{,}\) \(f''(x)=\frac{18}{(x+2)^3}\text{.}\)
Answer.
domain \((-\infty,-2)\cup(-2,1)\cup(1,\infty)\text{,}\) \(x\)-intercepts none, \(y\)-intercept \(\frac{1}{2}\text{,}\) vertical asymptote \(x=-2\text{,}\) hole \((1,0)\text{,}\) slant asymptote \(y=x-4\text{,}\) increasing \((-\infty,-5)\cup(1,\infty)\text{,}\) decreasing \((-5,-2)\cup(-2,1)\text{,}\) local maxima \((-5,-12)\text{,}\) local minima none, concave down \((-\infty,-2)\text{,}\) concave up \((-2,1)\cup(1,\infty)\text{.}\)

Exercise Group 2.3.6. Polynomial and Rational Functions.

Sketch the graph of each function.
(a)
\(f(x)=x(6-2x)^2\)
Hint.
\(f'(x)=12(x-3)(x-1)\text{,}\) \(f''(x)=24x-48\text{.}\)
Answer.
increasing: \((-\infty,1),(3,\infty)\text{,}\) decreasing: \((1,3)\text{,}\) local maxima: \((1,16)\text{,}\) local minima: \((3,0)\text{,}\) concave up: \((2,\infty)\text{,}\) concave down: \((-\infty,2)\text{,}\) inflection point(s): \((2,8)\text{.}\)
(b)
\(f(x)=\frac{4x}{x^2+4}\)
Hint.
\(f'(x)=-\frac{4(x-2)(x+2)}{(x^2+4)^2}\text{,}\) \(f''(x)=\frac{8x(x^2-12)}{(x^2+4)^3}\text{.}\)
Answer.
domain \((-\infty,\infty)\text{,}\) \(x\)-intercept \((0,0)\text{,}\) \(y\)-intercept 0, horizontal asymptote \(y=0\text{,}\) increasing \((-2,2)\text{,}\) decreasing \((-\infty,-2),(2,\infty)\text{,}\) local minima \((-2,-1)\text{,}\) local maxima \((2,1)\text{,}\) concave up \((-2\sqrt3,0),(2\sqrt3,\infty)\text{,}\) concave down \((-\infty,-2\sqrt3),(0,2\sqrt3)\text{,}\) inflection points \((-2\sqrt3,-\frac{\sqrt3}{2})\text{,}\) \((0,0)\text{,}\) \((2\sqrt3,\frac{\sqrt3}{2})\text{.}\)
(c)
\(f(x)=\frac{x}{x^2-1}\)
Hint.
\(f'(x)=\frac{-x^2-1}{(x^2-1)^2}\text{,}\) \(f''(x)=\frac{2x(x^2+3)}{(x-1)^3(x+1)^3}\text{.}\)
Answer.
domain \((-\infty,-1)\cup(-1,1)\cup(1,\infty)\text{,}\) \(x\)-intercept: 0, \(y\)-intercept: 0, vertical asymptotes: \(x=-1,1\text{,}\) horizontal asymptote: \(y=0\text{,}\) increasing: none, decreasing: \((-\infty,-1),(-1,1),(1,\infty)\text{,}\) local maxima: none, local minima: none, concave up \((-1,0),(1,\infty)\text{,}\) concave down \((-\infty,-1),(0,1)\text{,}\) inflection point \((0,0)\text{.}\)
(d)
\(f(x)=\frac{x^4+1}{x^2}\)
Hint.
\(f'(x)=\frac{2(x-1)(x+1)(x^2+1)}{x^3}\text{,}\) \(f''(x)=\frac{2(x^4+3)}{x^4}\text{.}\)
Answer.
domain \((-\infty,0)\cup(0,\infty)\text{,}\) \(x\)-intercepts none, \(y\)-intercept none, vertical asymptote \(x=0\text{,}\) increasing \((-1,0),(1,\infty)\text{,}\) decreasing \((-\infty,-1),(0,1)\text{,}\) local minima \((-1,2)\) and \((1,2)\text{,}\) local maxima none, concave up \((-\infty,0),(0,\infty)\text{,}\) concave down none.
(e)
\(f(x)=\frac{2x^2}{x^2-1}\)
Hint.
\(f'(x)=\frac{-4x}{(x^2-1)^2}\text{,}\) \(f''(x)=\frac{4(3x^2+1)}{(x^2-1)^3}\text{.}\)
Answer.
domain \((-\infty,-1)\cup(-1,1)\cup(1,\infty)\text{,}\) \(x\)-intercepts: \(x=0\text{,}\) \(y\)-intercept: \(0\text{,}\) increasing: \((-\infty,-1),(-1,0)\text{,}\) decreasing: \((0,1),(1,\infty)\text{,}\) local minima: none, local maxima: \((0,0)\text{,}\) concave up: \((-\infty,-1),(1,\infty)\text{,}\) concave down: \((-1,1)\text{,}\) inflection point(s): none.
(f)
\(f(x) = \frac{2x}{5+x^2}\)
Answer.
increasing: \(\brac{-\sqrt{5},\sqrt{5}}\text{,}\) decreasing: \((-\infty,-\sqrt{5}),(\sqrt{5},\infty)\text{,}\) local minima: \(\brac{-\sqrt{5},-\frac{\sqrt{5}}{5}}\text{,}\) local maxima: \(\brac{\sqrt{5},\frac{\sqrt{5}}{5}}\text{,}\) concave up: \(\brac{-\sqrt{15},0},(\sqrt{15},\infty)\text{,}\) concave down: \((-\infty,-\sqrt{15}),(0,\sqrt{15})\text{,}\) inflection point(s): \(\brac{-\sqrt{15},-\frac{\sqrt{15}}{10}},(0,0),\brac{\sqrt{15},\frac{\sqrt{15}}{10}}\text{.}\)

Exercise Group 2.3.7. Transcendental Functions.

Sketch the graph of each function.
(a)
\(f(x)=x\sqrt{4-x^2}\)
Hint.
\(f'(x)=\frac{4-2x^2}{\sqrt{4-x^2}}, f''(x)=\frac{2x^3-12x}{(4-x^2)^{3/2}}\text{.}\)
Answer.
domain \([-2,2]\text{,}\) \(x\)-intercepts \(x=-2,0,2\text{,}\) \(y\)-intercept 0, increasing on \((-\sqrt{2},\sqrt{2})\text{,}\) decreasing: \((-2,-\sqrt{2}),(\sqrt{2},2)\text{,}\) local minimum: \((-\sqrt{2},-2)\text{,}\) local maximum: \((\sqrt{2},2)\text{,}\) concave up: \((-2,0)\text{,}\) concave down: \((0,2)\text{,}\) inflection point: \((0,0)\text{.}\)
(b)
\(f(x)=e^{2x}+e^{-x}\)
Hint.
\(f'(x)=2e^{2x}-e^{-x}\text{,}\) \(f''(x)=4e^{2x}+e^{-x}\text{.}\)
Answer.
domain \((-\infty,\infty)\text{,}\) \(x\)-intercepts none, \(y\)-intercept 2, decreasing: \((-\infty,-\frac{\ln 2}{3})\text{,}\) increasing: \((-\frac{\ln 2}{3},\infty)\text{,}\) local min: \(\brac{-\frac{\ln 2}{3},\frac{3}{2^{2/3}}}\text{,}\) local max: none, concave up: \((-\infty,\infty)\text{,}\) concave down: none, inflection points: none.
(c)
\(f(x)=\sqrt{x^2+x-2}\)
Hint.
\(f'(x)=\frac{2x+1}{2\sqrt{x^2+x-2}}\text{,}\) \(f''(x)=-\frac{9}{4(x^2+x-2)^{3/2}}\text{.}\)
Answer.
domain \((-\infty,-2]\cup[1,\infty)\text{,}\) \(x\)-intercepts \(x=-2,1\text{,}\) \(y\)-intercept none, increasing: \((1,\infty)\text{,}\) decreasing: \((-\infty,-2)\text{,}\) local minima: \((-2,0),(1,0)\text{,}\) local maxima: none, concave up: none, concave down: \((-\infty,-2),(1,\infty)\text{,}\) inflection point(s): none.
(d)
\(f(x)=\ln(x^2+9)\)
Hint.
\(f'(x)=\frac{2x}{x^2+9}\text{,}\) \(f''(x)=\frac{2(9-x^2)}{(x^2+9)^2}\text{.}\)
Answer.
domain \((-\infty,\infty)\text{,}\) \(x\)-intercepts none, \(y\)-intercept \(\ln 9\text{,}\) decreasing: \((-\infty,0)\text{,}\) increasing: \((0,\infty)\text{,}\) local min: \((0,\ln 9)\text{,}\) local max: none, concave up: \((-3,3)\text{,}\) concave down: \((-\infty,-3),(3,\infty)\text{,}\) inflection points: \((-3,\ln 18),(3,\ln 18)\text{.}\)
(e)
\(f(x)=\frac{1}{1+e^{-x}}=\frac{e^x}{1+e^x}\)
Hint.
\(f'(x)=\frac{e^{-x}}{(1+e^{-x})^2}\text{,}\) \(f''(x)=\frac{e^{-x}(e^{-x}-1)}{(1+e^{-x})^3}\text{.}\)
Answer.
domain \((-\infty,\infty)\text{,}\) \(x\)-intercepts none, \(y\)-intercept \(\frac{1}{2}\text{,}\) increasing: \((-\infty,\infty)\text{,}\) decreasing: none, local minima: none, local maxima: none, concave up: \((-\infty,0)\text{,}\) concave down: \((0,\infty)\text{.}\)
(f)
\(f(x)=\frac{\ln{x}}{x^2}\)
Hint.
\(f'(x)=\frac{1-2\ln x}{x^3}\text{,}\) \(f''(x)=\frac{6\ln x-5}{x^4}\text{.}\)
Answer.
domain \((0,\infty)\text{,}\) \(x\)-intercepts \(x=1\text{,}\) \(y\)-intercept none, increasing: \((0,\sqrt{e})\text{,}\) decreasing: \((\sqrt{e},\infty)\text{,}\) local minima: none, local maxima: \(\brac{\sqrt{e},\frac{1}{2e}}\text{,}\) concave up: \((e^{5/6},\infty)\text{,}\) concave down: \((0,e^{5/6})\text{,}\) inflection point(s): \(\brac{e^{5/6},\frac{5}{6e^{5/3}}}\text{.}\)