Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\abs}[1]{\left\lvert #1 \right\rvert}
\newcommand{\set}[1]{\left\{ #1 \right\}}
\renewcommand{\neg}{\sim}
\newcommand{\brac}[1]{\left( #1 \right)}
\newcommand{\eval}[1]{\left. #1 \right|}
\newcommand{\Area}[1]{\operatorname{Area}\left( #1 \right)}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\csch}{csch}
\DeclareMathOperator{\sech}{sech}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 2.2 Local Extrema and the First Derivative Test
Subsection 2.2.1 Finding Local Maxima/Minima Examples
Exercise Group 2.2.1 . Polynomial Functions.
For each function, find any local maxima or local minima, and intervals of increase and decrease.
(a)
Hint . Answer .
increasing:
\((-\infty,-2),(0,\infty)\text{,}\) decreasing:
\((-2,0)\text{,}\) local maxima:
\((-2,5)\text{,}\) local minima:
\((0,1)\)
(b)
Hint . Answer .
increasing:
\((-\infty,-\frac{3}{2})\text{,}\) decreasing:
\((-\frac{3}{2},\infty)\text{,}\) local maxima:
\(\brac{-\frac{3}{2}, \frac{21}{4}}\text{,}\) local minima: none
(c)
Hint .
\(f'(x)=3x^2-12x+9=3(x-1)(x-3)\)
Answer .
increasing:
\((-\infty,1),(3,\infty)\text{,}\) decreasing:
\((1,3)\text{,}\) local maxima:
\((1,6)\text{,}\) local minima:
\((3,2)\)
(d)
Hint .
\(f'(x)=e^x(x^2+2x-3)=e^x(x+3)(x-1)\)
Answer .
increasing:
\((-\infty,-3),(1,\infty)\text{,}\) decreasing:
\((-3,1)\text{,}\) local maxima:
\((-3,\frac{6}{e^3})\text{,}\) local minima:
\((1,-2e)\)
(e)
Hint . Answer .
increasing:
\((-\frac{2\sqrt{3}}{3},\frac{2\sqrt{3}}{3})\text{,}\) decreasing:
\((-\infty,-\frac{2\sqrt{3}}{3}),(\frac{2\sqrt{3}}{3},\infty)\text{,}\) local maxima:
\(\brac{\frac{2\sqrt{3}}{3}, \frac{16\sqrt{3}}{9}}\text{,}\) local minima:
\(\brac{-\frac{2\sqrt{3}}{3}, -\frac{16\sqrt{3}}{9}}\)
(f)
Hint . Answer .
increasing: none, decreasing:
\((-\infty,\infty)\text{,}\) local maxima: none, local minima: none
(g)
\(f(x)=\frac{1}{3}x^3-9x+2\)
Hint .
\(f'(x)=x^2-9=(x-3)(x+3)\)
Answer .
increasing:
\((-\infty,-3),(3,\infty)\text{,}\) decreasing:
\((-3,3)\text{,}\) local maxima:
\((-3,20)\text{,}\) local minima:
\((3,-16)\)
(h)
Hint .
\(f'(x)=-3x^2+4x=x(4-3x)\)
Answer .
increasing:
\((0,\frac{4}{3})\text{,}\) decreasing:
\((-\infty,0),(\frac{4}{3},\infty)\text{,}\) local maxima:
\((\frac{4}{3}, \frac{32}{27}\text{,}\) local minima:
\((0,0)\)
(i)
Hint .
\(f'(x)=6x^2-18=6(x-\sqrt{3})(x+\sqrt{3})\)
Answer .
increasing:
\((-\infty,-\sqrt{3}),(\sqrt{3},\infty)\text{,}\) decreasing:
\((-\sqrt{3},\sqrt{3})\text{,}\) local maxima:
\((-\sqrt{3}, 12\sqrt{3})\text{,}\) local minima:
\((\sqrt{3}, -12\sqrt{3})\)
Exercise Group 2.2.2 . Rational and Transcendental Functions.
For each function, find any local maxima or local minima, and intervals of increase and decrease.
(a)
Hint .
\(f'(x)=\frac{2}{\sqrt{x}}-2x\)
Answer .
increasing:
\((0,1)\text{,}\) decreasing:
\((1,\infty)\text{,}\) local maxima:
\((1,6)\text{,}\) local minima: none
(b)
\(f(x)=\frac{x^2-3}{x-2}\text{,}\) \(x\ne 2\)
Hint .
\(f'(x)=\frac{x^2-4x+3}{(x-2)^2}=\frac{(x-1)(x-3)}{(x-2)^2}\)
Answer .
increasing:
\((-\infty,1),(3,\infty)\text{,}\) decreasing:
\((1,2),(2,3)\text{,}\) local maxima:
\((1,2)\text{,}\) local minima:
\((3,6)\)
(c)
Hint .
\(f'(x)=5x^4+3x^2=x^2(5x^2+3)\)
Answer .
increasing:
\((-\infty,\infty)\text{,}\) decreasing: none, local maxima: none, local minima: none
(d)
Hint .
\(f'(x)=2x-2-\frac{4}{x}=\frac{2(x-2)(x+1)}{x}\)
Answer .
increasing:
\((2,\infty)\text{,}\) decreasing:
\((0,2)\text{,}\) local maxima: none, local minima:
\(\brac{2, -4\ln 2}\)
(e)
\(f(x)=\frac{3}{2}x^4-x^6\)
Hint .
\(f'(x)=6x^3-6x^5=-6x^3(x-1)(x+1)\)
Answer .
increasing:
\((-\infty,-1),(0,1)\text{,}\) decreasing:
\((-1,0),(1,\infty)\text{,}\) local maxima:
\(\brac{-1,\frac{1}{2}},\brac{1,\frac{1}{2}}\text{,}\) local minima:
\((0,0)\)
(f)
Hint .
\(f'(x)=\frac{x(x-4)}{(x-2)^2}\)
Answer .
increasing:
\((-\infty,0),(4,\infty)\text{,}\) decreasing:
\((0,2),(2,4)\text{,}\) local maxima:
\((0,0)\text{,}\) local minima:
\((4,8)\)
(g)
Hint .
\(f'(x)=2e^{2x}-e^{-x}=e^{-x}(2e^{3x}-1)\)
Answer .
increasing:
\((-\frac{\ln 2}{3},\infty)\text{,}\) decreasing:
\((-\infty,-\frac{\ln 2}{3})\text{,}\) local maxima: none, local minima:
\(\brac{-\frac{\ln 2}{3}, \sqrt[3]{2}+\frac{1}{\sqrt[3]{4}}}\)
(h)
Hint . Answer .
increasing:
\((-\frac{1}{\sqrt{e}},0),(\frac{1}{\sqrt{e}},\infty)\text{,}\) decreasing:
\((-\infty,-\frac{1}{\sqrt{e}}),(0,\frac{1}{\sqrt{e}})\text{,}\) local maxima: none, local minima:
\((-\frac{1}{\sqrt{e}},1-\frac{1}{e}),(\frac{1}{\sqrt{e}},1-\frac{1}{e})\)
(i)
\(f(x)=\frac{x^3}{3x^2+1}\)
Hint .
\(f'(x)=\frac{3x^2(x^2+1)}{(3x^2+1)^2}\)
Answer .
increasing:
\((-\infty,\infty)\text{,}\) decreasing: none, local maxima: none, local minima: none
(j)
Hint .
\(f'(x)=\frac{e^{\sqrt{x}}}{2\sqrt{x}}\)
Answer .
increasing:
\((0,\infty)\text{,}\) decreasing: none, local maxima: none, local minima: none
(k)
Hint .
\(f'(x)=2x\ln x+x=x(2\ln x+1)\)
Answer .
increasing:
\((\frac{1}{\sqrt{e}},\infty)\text{,}\) decreasing:
\((0,\frac{1}{\sqrt{e}})\text{,}\) local maxima: none, local minima:
\(\brac{\frac{1}{\sqrt{e}}, -\frac{1}{2e}}\)
(l)
Hint .
\(f'(x)=(\ln x)^2+2\ln x=\ln x(\ln x+2)\)
Answer .
increasing:
\((0,\frac{1}{e^2}),(1,\infty)\text{,}\) decreasing:
\((\frac{1}{e^2},1)\text{,}\) local maxima:
\(\brac{\frac{1}{e^2}, \frac{4}{e^2}}\text{,}\) local minima:
\((1,0)\)
Exercise Group 2.2.3 . Fractional Power Functions (Cusps and Vertical Tangents).
For each function, find any local maxima or local minima, and intervals of increase and decrease.
(a)
Hint .
\(f'(x)=\frac{8(x^2-1)}{3x^{1/3}}\)
Answer .
increasing:
\((-1,0),(1,\infty)\text{,}\) decreasing:
\((-\infty,-1),(0,1)\text{,}\) local maxima:
\((0,0)\text{,}\) local minima:
\((-1,-3),(1,-3)\)
(b)
Hint .
\(f'(x)=\frac{4(x-1)}{3x^{2/3}}\)
Answer .
increasing:
\((1,\infty)\text{,}\) decreasing:
\((-\infty,0),(0,1)\text{,}\) local maxima: none, local minima:
\((1,-3)\)
(c)
\(f(x)=(x-5)^{\frac{1}{3}}\)
Hint .
\(f'(x)=\frac{1}{3(x-5)^{2/3}}\)
Answer .
increasing:
\((-\infty,5),(5,\infty)\text{,}\) decreasing: none, local maxima: none, local minima: none
(d)
\(f(x)=(x^2-1)^{\frac{1}{3}}\)
Hint .
\(f'(x)=\frac{2x}{3(x^2-1)^{2/3}}\)
Answer .
increasing:
\((0,1),(1,\infty)\text{,}\) decreasing:
\((-\infty,-1),(-1,0)\text{,}\) local maxima: none, local minima:
\((0,-1)\)
(e)
\(f(x)=x^{\frac{1}{3}}(x+8)\)
Hint .
\(f'(x)=\frac{4(x+2)}{3x^{2/3}}\)
Answer .
increasing:
\((-2,0),(0,\infty)\text{,}\) decreasing:
\((-\infty,-2)\text{,}\) local maxima: none, local minima:
\(\brac{-2,-6\sqrt[3]{2}}\)
(f)
\(f(x)=x^{\frac{2}{3}}(x+5)\)
Hint .
\(f'(x)=\frac{5(x+2)}{3x^{1/3}}\)
Answer .
increasing:
\((-\infty,-2),(0,\infty)\text{,}\) decreasing:
\((-2,0)\text{,}\) local maxima:
\(\brac{-2,3\sqrt[3]{4}}\text{,}\) local minima:
\((0,0)\)
(g)
\(f(x)=x^{\frac{1}{3}}(x^2-4)\)
Hint .
\(f'(x)=\frac{7x^2-4}{3x^{2/3}}\)
Answer .
increasing:
\((-\infty,-\frac{2\sqrt{7}}{7}),(\frac{2\sqrt{7}}{7},\infty)\text{,}\) decreasing:
\((-\frac{2\sqrt{7}}{7},0),(0,\frac{2\sqrt{7}}{7})\text{,}\) local maxima:
\(\approx \brac{-\frac{2}{\sqrt{7}}, 3.12}\text{,}\) local minima:
\(\approx \brac{\frac{2}{\sqrt{7}}, -3.12}\)
(h)
\(f(x)=x^{\frac{2}{3}}(x^2-4)\)
Hint .
\(f'(x)=\frac{8(x^2-1)}{3x^{1/3}}=\frac{8(x-1)(x+1)}{3x^{1/3}}\)
Answer .
increasing:
\((-1,0),(1,\infty)\text{,}\) decreasing:
\((-\infty,-1),(0,1)\text{,}\) local maxima:
\((0,0)\text{,}\) local minima:
\((-1,-3),(1,-3)\)
Exercise Group 2.2.4 . Radical Functions (Square Roots).
For each function, find any local maxima or local minima, and intervals of increase and decrease.
(a)
Hint .
\(f'(x)=\frac{-2x^2+8}{\sqrt{8-x^2}}\)
Answer .
domain:
\([-2\sqrt{2},2\sqrt{2}]\text{,}\) increasing:
\((-2,2)\text{,}\) decreasing:
\((-2\sqrt{2},-2),(2,2\sqrt{2})\text{,}\) local maxima:
\((2,4)\text{,}\) local minima:
\((-2,-4)\)
(b)
Hint .
\(f'(x)=\frac{-3x^3+18x}{\sqrt{9-x^2}}\)
Answer .
domain:
\([-3,3]\text{,}\) increasing:
\((-3,-\sqrt{6}),(0,\sqrt{6})\text{,}\) decreasing:
\((-\sqrt{6},0),(\sqrt{6},3)\text{,}\) local maxima:
\((-\sqrt{6},6\sqrt{3}),(\sqrt{6},6\sqrt{3})\text{,}\) local minima:
\((0,0)\)
(c)
Hint .
\(f'(x)=\frac{x-1}{\sqrt{x^2-2x+2}}\)
Answer .
domain:
\((-\infty,\infty)\text{,}\) increasing:
\((1,\infty)\text{,}\) decreasing:
\((-\infty,1)\text{,}\) local maxima: none, local minima:
\((1,1)\)
(d)
Hint .
\(f'(x)=1-\frac{3}{\sqrt{x-1}}=\frac{\sqrt{x-1}-3}{\sqrt{x-1}}\)
Answer .
domain:
\([1,\infty)\text{,}\) increasing:
\((10,\infty)\text{,}\) decreasing:
\((1,10)\text{,}\) local maxima: none, local minima:
\((10,-8)\)
(e)
Hint .
\(f'(x)=\frac{5x(4-x)}{2\sqrt{5-x}}\)
Answer .
domain:
\((-\infty,5]\text{,}\) increasing:
\((0,4)\text{,}\) decreasing:
\((-\infty,0),(4,5)\text{,}\) local maxima:
\((4,16)\text{,}\) local minima:
\((0,0)\)
Exercise Group 2.2.5 . Trigonometric Functions.
For each function, find any local maxima or local minima, and intervals of increase and decrease.
(a)
\(f(x)=2\cos x+\sin^2 x\) on
\([0,2\pi]\)
Hint .
\(f'(x)=2\sin x(\cos x-1)\)
Answer .
increasing:
\((\pi,2\pi)\text{,}\) decreasing:
\((0,\pi)\text{,}\) local maxima:
\((0,2),(2\pi,2)\text{,}\) local minima:
\((\pi,-2)\)
(b)
\(f(x)=\sin x+\cos x\) on
\([0,2\pi]\)
Hint . Answer .
increasing:
\((0,\frac{\pi}{4}),(\frac{5\pi}{4},2\pi)\text{,}\) decreasing:
\((\frac{\pi}{4},\frac{5\pi}{4})\text{,}\) local maxima:
\((\frac{\pi}{4},\sqrt{2})\text{,}\) local minima:
\((\frac{5\pi}{4},-\sqrt{2})\)